# fMRI in Neuroscience: Estimating Voxel Selectivity & the General Linear Model (GLM)

In a typical fMRI experiment a series of stimuli are presented to an observer and evoked brain activity–in the form of blood-oxygen-level-dependent (BOLD) signals–are measured from tiny chunks of the brain called voxels. The task of the researcher is then to infer the tuning of the voxels to features in the presented stimuli based on the evoked BOLD signals. In order to make this inference quantitatively, it is necessary to have a model of how BOLD signals are evoked in the presence of stimuli. In this post we’ll develop a model of evoked BOLD signals, and from this model recover the tuning of individual voxels measured during an fMRI experiment.

## Modeling the Evoked BOLD Signals — The Stimulus and Design Matrices

Suppose we are running an event-related fMRI experiment where we present different stimulus conditions to an observer while recording the BOLD signals evoked in their brain over a series of consecutive fMRI measurements (TRs). We can represent the stimulus presentation quantitatively with a binary * Stimulus Matrix,* , whose entries indicate the onset of each stimulus condition (columns) at each point in time (rows). Now let’s assume that we have an accurate model of how a voxel is activated by a single, very short stimulus. This activation model is called hemodynamic response function (HRF), , for the voxel, and, as we’ll discuss in a later post, can be estimated from the measured BOLD signals. Let’s assume for now that the voxel is also activated to an equal degree to all stimuli. In this scenario we can represent the BOLD signal evoked over the entire experiment with another matrix called the

*that is the convolution of the stimulus matrix with the voxel’s HRF .*

**Design Matrix**Note that this model of the BOLD signal is an example of the Finite Impulse Response (FIR) model that was introduced in the previous post on fMRI Basics.

To make the concepts of and more concrete, let’s say our experiment consists of different stimulus conditions: a light, a tone, and heat applied to the palm. Each stimulus condition is presented twice in a staggered manner during 80 TRs of fMRI measurements. The stimulus matrix and the design matrix are simulated here in Matlab:

TR = 1; % REPETITION TIME t = 1:TR:20; % MEASUREMENTS h = gampdf(t,6) + -.5*gampdf(t,10); % HRF MODEL h = h/max(h); % SCALE HRF TO HAVE MAX AMPLITUDE OF 1 trPerStim = 30; % # TR PER STIMULUS nRepeat = 2; % # OF STIMULUS REPEATES nTRs = trPerStim*nRepeat + length(h); impulseTrain0 = zeros(1,nTRs); % VISUAL STIMULUS impulseTrainLight = impulseTrain0; impulseTrainLight(1:trPerStim:trPerStim*nRepeat) = 1; % AUDITORY STIMULUS impulseTrainTone = impulseTrain0; impulseTrainTone(5:trPerStim:trPerStim*nRepeat) = 1; % SOMATOSENSORY STIMULUS impulseTrainHeat = impulseTrain0; impulseTrainHeat(9:trPerStim:trPerStim*nRepeat) = 1; % COMBINATION OF ALL STIMULI impulseTrainAll = impulseTrainLight + impulseTrainTone + impulseTrainHeat; % SIMULATE VOXELS WITH VARIOUS SELECTIVITIES visualTuning = [4 0 0]; % VISUAL VOXEL TUNING auditoryTuning = [0 2 0]; % AUDITORY VOXEL TUNING somatoTuning = [0 0 3]; % SOMATOSENSORY VOXEL TUNING noTuning = [1 1 1]; % NON-SELECTIVE beta = [visualTuning', ... auditoryTuning', ... somatoTuning', ... noTuning']; % EXPERIMENT DESIGN / STIMULUS SEQUENCE D = [impulseTrainLight',impulseTrainTone',impulseTrainHeat']; % CREATE DESIGN MATRIX FOR THE THREE STIMULI X = conv2(D,h'); % X = D * h X(nTRs+1:end,:) = []; % REMOVE EXCESS FROM CONVOLUTION % DISPLAY STIMULUS AND DESIGN MATRICES subplot(121); imagesc(D); colormap gray; xlabel('Stimulus Condition') ylabel('Time (TRs)'); title('Stimulus Train, D'); set(gca,'XTick',1:3); set(gca,'XTickLabel',{'Light','Tone','Heat'}); subplot(122); imagesc(X); xlabel('Stimulus Condition') ylabel('Time (TRs)'); title('Design Matrix, X = D * h') set(gca,'XTick',1:3); set(gca,'XTickLabel',{'Light','Tone','Heat'});

Each column of the design matrix above (the right subpanel in the above figure) is essentially a model of the BOLD signal evoked independently by each stimulus condition, and the total signal is simply a sum of these independent signals.

## Modeling Voxel Tuning — The Selectivity Matrix

In order to develop the concept of the design matrix we assumed that our theoretical voxel is equally tuned to all stimuli. However, few voxels in the brain exhibit such non-selective tuning. For instance, a voxel located in visual cortex will be more selective for the light than for the tone or the heat stimulus. A voxel in auditory cortex will be more selective for the tone than for the other two stimuli. A voxel in the somoatorsensory cortex will likely be more selective for the heat than the visual or auditory stimuli. How can we represent the tuning of these different voxels?

A simple way to model tuning to the stimulus conditions in an experiment is to multiplying each column of the design matrix by a weight that modulates the BOLD signal according to the presence of the corresponding stimulus condition. For example, we could model a visual cortex voxel by weighting the first column of with a positive value, and the remaining two columns with much smaller values (or even negative values to model suppression). It turns out that we can model the selectivity of individual voxels simultaneously through a * Selectivity Matrix*, . Each entry in is the amount that the -th voxel (columns) is tuned to the -th stimulus condition (rows). Given the design matrix and the selectivity matrix, we can then predict the BOLD signals of selectively-tuned voxels with a simple matrix multiplication:

Keeping with our example experiment, let’s assume that we are modeling the selectivity of four different voxels: a strongly-tuned visual voxel, a moderately-tuned somatosensory voxel, a weakly tuned auditory voxel, and an unselective voxel that is very weakly tuned to all three stimulus conditions. We can represent the tuning of these four voxels with a selectivity matrix. Below we define a selectivity matrix that represents the tuning of these 4 theoretical voxels and simulate the evoked BOLD signals to our 3-stimulus experiment.

% SIMULATE NOISELESS VOXELS' BOLD SIGNAL % (ASSUMING VARIABLES FROM ABOVE STILL IN WORKSPACE) y0 = X*beta; figure; subplot(211); imagesc(beta); colormap hot; axis tight ylabel('Condition') set(gca,'YTickLabel',{'Visual','Auditory','Somato.'}) xlabel('Voxel'); set(gca,'XTick',1:4) title('Voxel Selectivity, \beta') subplot(212); plot(y0,'Linewidth',2); legend({'Visual Voxel','Auditory Voxel','Somato. Voxel','Unselective'}); xlabel('Time (TRs)'); ylabel('BOLD Signal'); title('Activity for Voxels with Different Stimulus Tuning') set(gcf,'Position',[100 100 750 540]) subplot(211); colorbar

The top subpanel in the simulation output visualizes the selectivity matrix defined for the four theoretical voxels. The bottom subpanel plots the columns of the matrix of voxel responses . We see that the maximum response of the strongly-tuned visual voxel (plotted in blue) is larger than that of the other voxels, corresponding to the larger weight upper left of the selectivity matrix. Also note that the response for the unselective voxel (plotted in cyan) demonstrates the linearity property of the FIR model. The attenuated but complex BOLD signal from the unselective voxel results from the sum of small independent signals evoked by each stimulus.

## Modeling Voxel Noise

The example above demonstrates how we can model BOLD signals evoked in noisless theoretical voxels. Though this noisless scenario is helpful for developing a modeling framework, real-world voxels exhibit variable amounts of * noise *(noise is any signal that cannot be accounted by the FIR model). Therefore we need to incorporate a noise term into our BOLD signal model.

The noise in a voxel is often modeled as a random variable . A common choice for the noise model is a zero-mean Normal/Gaussian distribution with some variance :

Though the variance of the noise model may not be known apriori, there are methods for estimating it from data. We’ll get to estimating noise variance in a later post when we discuss various sources of noise and how to account for them using more advance techniques. For simplicity, let’s just assume that the noise variance is 1 as we proceed.

## Putting It All Together — The General Linear Model (GLM)

So far we have introduced on the concepts of the stimulus matrix, the HRF, the design matrix, selectivity matrix, and the noise model. We can combine all of these to compose a comprehensive quantitative model of BOLD signals measured from a set of voxels during an experiment:

This is referred to as the **General Linear Model ****(****GLM****)**.

In a typical fMRI experiment the researcher controls the stimulus presentation , and measures the evoked BOLD responses from a set of voxels. The problem then is to estimate the selectivities of the voxels based on these measurments. Specifically, we want to determine the parameters that best explain the measured BOLD signals during our experiment. The most common way to do this is a method known as * Ordinary Least Squares (OLS) Regression*. Using OLS the idea is to adjust the values of such that the predicted model BOLD signals are as similar to the measured signals as possible. In other words, the goal is to infer the selectivity each voxel would have to exhibit in order to produce the measured BOLD signals. I showed in an earlier post that the optimal OLS solution for the selectivities is given by:

Therefore, given a design matrix and a set of voxel responses associated with the design matrix, we can calculate the selectivities of voxels to the stimulus conditions represented by the columns of the design matrix. This works even when the BOLD signals are noisy. To get a better idea of this process at work let’s look at a quick example based on our toy fMRI experiment.

## Example: Recovering Voxel Selectivity Using OLS

Here the goal is to recover the selectivities of the four voxels in our toy experiment they have been corrupted with noise. First, we add noise to the voxel responses. In this example the variance of the added noise is based on a concept known as * signal-to-noise-ration* or

*. As the name suggests, SNR is the ratio of the underlying signal to the noise “on top of” the signal. SNR is a very important concept when interpreting fMRI analyses. If a voxel exhibits a low SNR, it will be far more difficult to estimate its tuning. Though there are many ways to define SNR, in this example it is defined as the ratio of the maximum signal amplitude to the variance of the noise model. The underlying noise model variance is adjusted to be one-fifth of the maximum amplitude of the BOLD signal, i.e. an SNR of 5. Feel free to try different values of SNR by changing the value of the variable in the Matlab simulation. Noisy versions of the 4 model BOLD signals are plotted in the top subpanel of the figure below. We see that the noisy signals are very different from the actual underlying BOLD signals.*

**SNR**Here we estimate the selectivities from the GLM using OLS, and then predict the BOLD signals in our experiment with this estimate. We see in the bottom subpanel of the above figure that the resulting GLM predictions of are quite accurate. We also compare the estimated selectivity matrix to the actual selectivity matrix below. We see that OLS is able to recover the selectivity of all the voxels.

% SIMULATE NOISY VOXELS & ESTIMATE TUNING % (ASSUMING VARIABLES FROM ABOVE STILL IN WORKSPACE) SNR = 5; % (APPROX.) SIGNAL-TO-NOISE RATIO noiseSTD = max(y0(:))./SNR; % NOISE LEVEL FOR EACH VOXEL noise = bsxfun(@times,randn(size(y0)),noiseSTD); y = y0 + noise; betaHat = inv(X'*X)*X'*y % OLS yHat = X*betaHat; % GLM PREDICTION figure subplot(211); plot(y,'Linewidth',3); xlabel('Time (s)'); ylabel('BOLD Signal'); legend({'Visual Voxel','Auditory Voxel','Somato. Voxel','Unselective'}); title('Noisy Voxel Responses'); subplot(212) h1 = plot(y0,'Linewidth',3); hold on h2 = plot(yHat,'-o'); legend([h1(end),h2(end)],{'Actual Responses','Predicted Responses'}) xlabel('Time (s)'); ylabel('BOLD Signal'); title('Model Predictions') set(gcf,'Position',[100 100 750 540]) figure subplot(211); imagesc(beta); colormap hot(5); axis tight ylabel('Condition') set(gca,'YTickLabel',{'Visual','Auditory','Somato.'}) xlabel('Voxel'); set(gca,'XTick',1:4) title('Actual Selectivity, \beta') subplot(212) imagesc(betaHat); colormap hot(5); axis tight ylabel('Condition') set(gca,'YTickLabel',{'Visual','Auditory','Somato.'}) xlabel('Voxel'); set(gca,'XTick',1:4) title('Noisy Estimated Selectivity') drawnow

## Wrapping Up

Here we introduced the GLM commonly used for fMRI data analyses and used the GLM framework to recover the selectivities of simulated voxels. We saw that the GLM is quite powerful of recovering the selectivity in the presence of noise. However, there are a few details left out of the story.

First, we assumed that we had an accurate (albeit exact) model for each voxel’s HRF. This is generally not the case. In real-world scenarios the HRF is either assumed to have some canonical shape, or the shape of the HRF is estimated the experiment data. Though assuming a canonical HRF shape has been validated for block design studies of peripheral sensory areas, this assumption becomes dangerous when using event-related designs, or when studying other areas of the brain.

Additionally, we did not include any physiological noise signals in our theoretical voxels. In real voxels, the BOLD signal changes due to physiological processes such as breathing and heartbeat can be far larger than the signal change due to underlying neural activation. It then becomes necessary to either account for the nuisance signals in the GLM framework, or remove them before using the model described above. In two upcoming posts we’ll discuss these two issues: estimating the HRF shape from data, and dealing with nuisance signals.

Posted on November 26, 2012, in fMRI, Neuroscience, Regression, Simulations and tagged BOLD signal, convolution, design matrix, fMRI, General Linear Model, GLM, Hemodynamic Response Function, HRF, OLS, Ordinary Least Squares, Selectivity Matrix, Signal-to-noise Ratio, SNR, Stimulus Matrix. Bookmark the permalink. 2 Comments.

It was very nice explanation… Thanks 🙂

Pingback: fMRI in Neuroscience: Modeling the HRF With FIR Basis Functions « The Clever Machine